تغییر پذیری

تغییر پذیری

مورد
تمام مدل های با دارای توپولوژی بسته ای هستند. در این مورد به دلیل وجود یک مقدار حدی برای ثابت کیهانشناسی امکان های بیشتری وجود دارد.
الف) اگر باشد سه وجود دارد.
1)برای این مدل، مدل لمیتر نام دارد و مانند یا به طور نامحدود انبساط می یابد. اما هنگامیکه به نزدیک می شود آهنگ انبساط کند می شود.
2) . سه امکان در این حالت وجود دارد.
2-1) مدل ایستای اینشتین در این حالت جاذبه گرانشی با دافعه ی کیهانی برابر می شوند. و فاکتور مقیاس مقدار ثابتی دارد.
2-2) این مدل انفجار بزرگ است که با گذشت زمان به طور مجانبی به مدل ایستای اینشتین نزدیک می شود.
مدل ادینگتون-لمیتر که اگر زمان را به عقب برگردانیم به طور مجانبی به مدل ایستای اینشتین نزدیک می شود.
2-3) . در این حالت دو امکان وجود دارد. یک مدل نوسانی و مدلی دیگر که در ابتدا فاز تراکمی سپس به دنبال آن یک فاز انبساطی دارد.
ب) که یک مدل نوسانی است.
پ) که یک مدل نوسانی است
فصل سوم
بررسی خصوصیات یک مدل گرانشی برای ثابت ساختار ریز متغییر
3-1 بررسی تغییرات ثابت ساختار ریز
اولین قدم برای بررسی تغییرات ثابت ساختار ریز پذیرش این واقعت است که الکترومغناطیس ماکسول بایستی اصلاح شود. ابتدا یک توصیف کلاسیکی برای برهمکنش الکترومغناطیسی با ماده را انتخاب می کنیم با در نظر گرفتن رابطه ی ثابت ساختار ریز با بار الکتریکی می بینیم که تغییر پذیری مستلزم تغییر پذیری بار الکتریکی است و یا برعکس. البته در یکایی که و ثابت باشند. گفته ی فوق به نظر می رسد که با قانون پایستگی بار و معادلات ماکسول هم خوانی نداشته باشد. اگر پایستگی بار با وجود تغییر پذیری برقرار باشد آشکارا چیزی در تصویر پذیرفته شده ی الکترومغناطیس ماکسولی بایستی اصلاح شود. برای این کار ما نیاز به پیش فرض هایی داریم که با شیوه ای منطقی در جهت اصلاح معادلات ماکسول راهنمایمان باشد. این شرایط و پیش فرض ها بایستی مدلی مستقل از چارچوب برای تغییر پذیری ارائه دهد. به طوریکه اصول و قوانین فیزیکی پذیرفته شده محترم شمرده شوند. این پیش فرض ها عبارتند از
برای ثابت الکترومغناطیسی و جفت شدگی پتانسیل برداری با ماده کمینه است. این فرض براساس اصل همخوانی است. این فرض تضمین می کند در صورت ناچیز بودن جفت شدگی معادلات دینامیکی نظریه به شکل اصلی و پذیرفته شده ی قبلی تبدیل شوند.
تغییر نتیجه ی دینامیک است. اگر تغییر کند تغییرات آن تحت نفوذ ماده ی بار دار است و ماده ی باردار نیز به نوبه ی خود تحت نفوذ تغییرات است. فقط دینامیک می تواند این ویژگی مهم را نشان دهد.
دینامیک الکترومغناطیس از یک کنش ناوردا به دست می آید.
کنش دارای ناوردایی پیمانه ای موضعی است. اهمیت اصل پیمانه ای در فیزیک اقرار آمیز نیست به کمک این اصل پیمانه ای است که تصویر کاملی از بر همکنش های میکروسکوپ وجود دارد. اگر این اصل را در نظر نگیریم بایستی روش نامعقولی برای اصلاح معادلات ماکسول اتخاذ کنیم.
الکترومغاطیس علّی است و هیچ آزمایشی برای نقض علّی بودن آن وجود ندارد.
کنش الکترومغاطیسی دارای ناوردایی معکوس زمان است.
کمترین طولی که می تواند وارد نظریه ی فیزیکی شود طول پلانک-ویلر است که به صورت است. برای طول های کمتر میدان های الکتریکی و مغناطیسی هموار نیستند و ذرات در سیاه چاله هایی که خود ایجاد می کنند به دام می افتند.
گرانش به کمک متریک فضا زمانی که معادلات اینشتین را بر آورد می کند توصیف می شود. اهمیت توصیف هندسی گرانش امروزه به اندازه ی کافی روشن است. معادلات اینشتین نمونه ای از دینامیک متریک است که آزمایش های زیادی را به چالش کشیده است.

Share